
International Journal of Scientific & Engineering Research Volume 11, Issue 9, September-2020 1677

ISSN 2229-5518

IJSER © 2020

http://www.ijser.org

Implementation of the Synchronization
Mechanism of Application Instances using

SwellRT's Collaborative Objects to Optimize the
Communication

Macaire Ngomo

Abstract— We propose to define a protocol which manages the synchronization of two instances of the same application, through a

communication network. We are aiming for something simpler: to synchronize instances of the same application on different computers,

especially in a context of low-speed Internet connection, with applications for example in the fields of distance education or remote

assistance. In this article, we describe the situation using an extended automata asynchronous composition model. Our study is carried out

within the framework of a general synchronizable application. In the particular context of this study, the envisaged application corresponds

to a SERPOLET environment integrating communication modules, for the synchronous and / or asynchronous follow-up or support of a

learner (respectively a group of learners) by his tutor (respectively their tutor). Our early implementations of the synchronization

mechanism used socket and RMI communications in Java. In this new implementation, which is the subject of this study, we use the

natural collaborative possibilities of SwellRT to optimize the communication modules between application instances.

Index Terms— Synchronization of application instances, synchronization protocol, synchronous or asynchronous monitoring and support,

low-speed Internet connection, intelligent systems, learning Technologies for Education systems and intelligent environment, SERPOLET

system, SwellRT, Collaborative objects, RMI, Socket.

—————————— ——————————

1 INTRODUCTION

S part of our development projects on e-learning man-
agement systems, advanced learning technologies, intel-
ligent environments, educational systems, we were faced

with the problem of the poor quality of the links in certain
geographical areas, due to low-speed Internet connectivity,
not allowing us to use the standard software of videoconfer-
encing, remote display, or remote document sharing, typically
carrying very high-bandwidth bitmap images. The application
instance synchronization mechanism is used in different con-
texts. For example, the synchronization procedure for
ADO.NET is to use session variables for collaborative syn-
chronization [8]. To address this specific need, we propose in
this paper to define a protocol that manages the synchroniza-
tion of two instances or copies of the same application,
through a communication network. In this paper, we present
the situation using an asynchronous composition model of
extended automata [1] [19] [20] [21] [6]. Our study will be
done within the framework of a general synchronizable appli-
cation. In the particular context of this study, the application
envisaged will correspond to the environment of the author-
ing system SERPOLET and its derived [11][12][2][13][17][18]
for synchronous and asynchronous monitoring and assistance
between a learner and his tutor. In general, it will be a matter
of being placed in a situation of assisted learning or tutored
learning using a communication mechanism based on the ex-
change of events based on scripts between the "Master station"
and the "Slave station". Tutoring is more a function related to
the accompaniment of learners during their learning pathway
[10][3][4][5]. The role of tutor is reinforced in the distance edu-
cation systems thanks to a set of tools resulting from the ad-
vances of the new technologies for information and communi-

cation. The general model for organizing online tutoring can
be summarized in the following figure [5]:

Our model is inspired by this general model of tutoring and

modifies it by removing remote access to educational re-
sources (online content) to obtain a model of tutoring called
local resource. [17] makes an inventory of the tools according
to the tutoring activities. The palette of the tutor is rich of sev-
eral families of tools. Each family changes very little in terms

A

Fig. 1. General Model of online tutoring to online resource.

Fig. 2. Model for organizing online tutoring with a local resource.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 11, Issue 9, September-2020 1678

ISSN 2229-5518

IJSER © 2020

http://www.ijser.org

of pedagogy because its objectives remain constant but it can
evolve very quickly on the technical level according to the
contributions of the new technologies.

2 PROBLEMATIC

A first user, named master (UM), has an application whose
localization it manages the evolution or the course. A second
user, named slave (UE), has a copy/instance of the same ap-
plication and, for example for monitoring purposes, assis-
tance, wants to synchronize the state of his copy, and his fu-
ture evolution on that of UM. We voluntarily chose to detach
ourselves from the roles of teacher and pupil, as these roles do
not necessarily reflect the sense of synchronization. Indeed,
when monitoring the activity of a pupil, the role of the teacher
is held by the teacher. In the case of an explanation given by
the teacher or guardian on the environment of a student, the
role UM is held by the teacher. The local application is called
X. It receives the events transmitted by the user, events to
which it reacts. Periodically, it saves its current state X as a
series of states XS0, XS1, XS2 ... The last saved state will serve
as a starting point when requesting to resynchronize the re-
mote copy of the application.

The set of states will be used during an asynchronous ex-
change (deferred tracking).

The following diagram (Figure 3) describes in a synoptic
manner the type of exchanges that one has to consider be-
tween the user "Master" and the user.

Each module is interconnected by queues to the modules

with which it communicates. These queues make it possible to
model the asynchronism of the behaviours between these enti-
ties. The function X '= f (X) describes the sequence of states
that the synchronized application saves.

The numbers in the queues represent the numbers of the
events that transit between the different entities. Because of
the asynchronism, these numbers are not all processed at the
same time, on the diagram. The sequence of numbers gives the
order of processing of the messages by the entities.

Of course, the notion of the backup state of an application is
dependent on the type of application considered. In the same
way, events handled by an application depend on the applica-
tion, both in terms of their choice and their granularity. The

main difficulty for a given application will be the possibility of
identifying these events and the notion of backup / recovery
state. Subsequently, in our study, we assume that the generic
application X possesses the three preceding characteristics,
implemented elsewhere in the project. This is the case of the
authoring system SERPOLET.

3 SYNCHRONIZATION SERVICE ARCHITECTURE

The model on which the formal specification of the distributed

system that we use is based is that of extended automata. In that

model, each specified entity has a behaviour represented in the

form of a finite state machine.

The architecture of the system respects the OSI three-layer basic

design model. In this model, the design of a new communication

service is done by means of a software layer accessible to a set

of users in the form of a set of service primitives. This software

layer consists of a set of distributed entities, which interact with

one another by defining a common message format, called PDUs

(Protocol Data Units). These PDUs are physically exchanged be-

tween entities using a lower level communication service. Figure 5

shows the architecture of the application copy resynchronization

protocol.

The "master user" and "slave user" boxes respectively repre-

sent the two users of the resynchronization service. This service

is physically realized in the form of the two software entities,

"protocol entity", which interact with each other using the under-

lying communication service.

The architecture defined uses two instances of "runtime"
SERPOLET, one master (linked to the application) and the
other slave (linked to the control module of the application).

Between these two instances, a distributed service, in the

sense of communication service, is specified and developed in
the form of a communication protocol to effectively ensure the
actual synchronization of these two instances. The design ar-
chitecture (Figure 4) will subsequently be defined in the im-
plementation architecture in which the entities corresponding
to each user will be physically distributed on remote machines
corresponding to each user. From a conceptual point of view,
the synchronization function remains decoupled from the
SERPOLET modules. In the final phase of implementation,
integration of this entity with this module can be envisaged,
but in any case it will remain independent of the other func-

Fig. 3. Diagram of master and slave communication.

Fig. 4. Diagram of master and slave communication.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 11, Issue 9, September-2020 1679

ISSN 2229-5518

IJSER © 2020

http://www.ijser.org

tions of the synchronized software.

4 SYNCHRONIZATION MODULES

This part describes the list of interfaces that each user, master
and slave, possesses.

The state of each interface corresponds to one of the states

of the user automata. The change of the contents of each inter-
face is caused by the arrival of an event, modelled by the tran-
sitions of the user automata. The two synchronization mod-
ules are shown in the diagram in the figure below. Once the
two modules are connected, a communication channel allows
the exchange of data between the two entities. Each entity re-
ceives data from the local "application runtime" that it sends to
the other remote module, and data it receives via the channel
to the local "runtime". Although it is possible to initiate a
communication to several, to optimize the follow-up, in this
version the communication is point to point. Indeed, even if
our model is not limited and even if there are technical possi-
bilities, we privilege in this study the quality of the exchanges
and therefore did not envisage a simultaneous follow-up of
several positions.

4.1 Master Module

This user interface has only an indication role: it indicates
whether the "master" application is operating autonomously,
or whether it slaves the slave.

The proposed interface consists of two text fields. The first

one at the top specifies the state of the application. The second,
below, is a message that details the meaning of this state. The
transition from the "independent" state to the "enslaved" state
is caused by the arrival of the primitive "Sbdy_sync_ind". The
reverse path occurs when the primitive "Sbdy_end_sync_ind"
arrives.

4.2 Slave Module

The interface of the slave has two roles: it allows requesting
that the local application is enslaved to that of the master and
it informs of the synchronization state of the two applications.
The requests for enslavement/servo-control and end of en-
slavement/servo-control are done using a button. The status
of the local application is displayed using two text fields. The
first gives a brief description of the state; the second explicitly
states this state. The interface of the slave only shows that both
applications are independent when the user is in the "rest"
state. The interface of the slave only shows that both applica-
tions are independent when the user is in the "rest" state. The
action of the "sync" button causes a synchronization request.
This action causes the "Req_sync_req" primitive to be issued,
as described by the slave user controller, which changes to the
"Wait_conf" state. The interface that corresponds to this state is
then as follows:

Once the synchronization is effective, the slave user re-

ceives the message "Req_sync_conf" and switches to the
"Sync_Work" state. The button becomes active again. It will be
used to stop synchronization. The interface that corresponds
to this state is then as shown in the following figure.

The action of the user on the "End" button corresponds to

an end of synchronization of the applications. It results in the
issuing of the primitive "End_sync_req", and a return of the
slave user to the "Rest" state. The new interface then corre-
sponds to that of the independent applications.

5 IMPLEMENTATION OF THE APPLICATION INSTANCES

SYNCHRONIZATION MECHANISM BASED ON

SWELLRT

In this section, to improve our early implementations of the
application instance synchronization mechanism and increase
collaboration power, we propose a new collaborative object-
based implementation of SwellRT [34] [23] [24] [298] [32] [9].

Fig. 5. Communication between the "Master" and "Slave" modules.

Fig. 6. Application running in standalone
mode and synchronizing another.

Fig. 7. Application running in standalone mode
and not synchronizing another.

Fig. 8. Application being synchronized.

Fig. 9. Application enslaved to that of the Master.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 11, Issue 9, September-2020 1680

ISSN 2229-5518

IJSER © 2020

http://www.ijser.org

5.1 Socket Implementation

The first implementations were based on communication
by socket, point to point (unicast) or multipoint (multicast)
depending on usage [14] [15]. The sockets interface is the most
common network programming interface allowing the con-
ventional use of communication by socket according to the
usual client-server scheme. Sockets allow building a custom
solutions.

In the Web version, a WebSocket allows bidirectional and

full duplex communication on a single TCP socket between a
client and a server. When the server responds, the connection
is established and the client and server can send and receive
messages. The HTTP protocol is only used to establish the
connection of a WebSocket: once the connection is established,
the HTTP protocol is no longer used in favour of the Web-
Socket protocol.

5.2 RMI Implementation in Java

The second implementation is based on RMI (Remote
Method Invocation). RMI is a JDK technology in Java for easily
implementing distributed objects and remote method calls.
The purpose of RMI is to allow the call, execution, and return
of the result of a method executed in a different virtual ma-
chine than that of the calling object. RMI technology is respon-
sible for making transparent the location of the remote object,
its call and the return of the result.

In fact, it uses two special classes, the stub and the skeleton,

which must be generated with the rmic tool that comes with
the JDK. The stub is a class on the client side and the skeleton
is its server side counterpart. These two classes are responsible
for ensuring all the mechanisms for calling, communicating,
executing, returning and receiving the result.

Communications between client and server are carried out
using RMI-IIOP (Internet Inter-Orb Protocol), a protocol
standardized by the OMG (Object Management Group) and
used in the CORBA architecture. The transmission of data is
done through a system of layers, based on the OSI model in
order to guarantee interoperability between programs and
versions of Java. The stub (translate stub) and the skeleton
(translate skeleton), respectively on the client and the server,
ensure the conversion of communications with the remote
object.

The Remote Reference Layer (RRL) is responsible for the lo-
cation system to provide a means for objects to obtain a refer-
ence to the remote object. It is provided by the ja-
va.rmi.Naming package. It is generally called the RMI register
because it references the objects.

The transport layer is used to listen to incoming calls as
well as to establish connections and transport data on the net-
work via the TCP protocol. The java.net.Socket and ja-
va.net.SocketServer packages implicitly provide this function.

5.3 SwellRT Implementation

In this section, to improve ours first implementations of the
application instances synchronization mechanism, we propose
an implementation based on collaborative objects de SwellRT.
First implementations were based on the use of sockets and
RMI in Java. For this new implementation, we used collabora-
tive objects by exploiting the natural collaborative possibilities
and development facilities offered by SwellRT, an open source
framework for the development of decentralized collaborative
Web applications naturally offering storage, sharing and col-
laboration services.
SwellRT is a BaaS technology capable of working in a decen-
tralized manner thanks to the use of an open protocol to inter-
connect services (a federated network) and to exchange data in

Point-to-point communication (unicast) for individual

follow-up, support or coaching:

Fig. 10a. Mode of communication between “clients” and “server”.

Fig. 11. RMI Layered Structure.

Fig. 12. RMI Transport Layer.

Multipoint communication (multicast) for group

communication or broadcasting:

Fig. 10b. Mode of communication between “clients” and “server”. IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 11, Issue 9, September-2020 1681

ISSN 2229-5518

IJSER © 2020

http://www.ijser.org

real time.
Development frameworks are built thinking in centralized
apps, moreover when thinking of collaborative apps. SwellRT
(http://swellrt.org) is a development framework for building
decentralized real-time collaborative apps, easily and avoiding
extra code to the developer. SwellRT provides a server side
(storage, sharing, identity, federation) and an API to build
apps in JavaScript, Java or Android. You may think of Google
Drive Real-Time API or Firebase but decentralized & open
source.
Initially developed as part of the P2PVALUE
[31][30][16][25][9][33] project which was stopped in September
2016, SwellRT joined the fold of the Apache foundation.
SwellRT is a real-time storage platform. Its API makes it pos-
sible to manipulate and share objects in real time on a decen-
tralized network. SwellRT enables real-time collaboration
within web applications [26]. Besides code sharing, SwellRT
can be used to build chats, survey platforms, or document
management platforms, for example.
SwellRT is a free and open-source backend-as-a-service and
API focused to ease development of apps featuring real-time
collaboration. It supports the building of mobile and web
apps, and aims to facilitate interoperability and federation. It
provides prebuilt features to speed up development of collab-
orative Web applications:
- Real-time storage (eventual consistency) (NoSQL)
- Extensible text collaborative editor
- User management and authentication
- Server federation with Matrix (XMPP or Matrix.org
[28])
- Integration of third party systems based on events (in
development)

Concurrent access and storage control is based on the Apache
Wave Operational Transformation System, which ensures the
integrity of shared data. Apache Wave is a discontinued soft-
ware framework for online real-time collaborative editing.
Google originally developed it under the name Google Wave.
It was announced at the Google I / O conference on May 28,
2009. Business Transformation: Business Transformation (OT)
is a technology to support a range of collaboration features in
advanced collaborative software systems. In 2009, OT was
adopted as the core technique behind collaboration features in
Apache Wave and Google Docs.
The main feature of SwellRT is real-time storage based in ob-
jects. They can be shared among participants that can mutate
them in real-time. All changes are persisted and propagated
transparently. Object's state is eventually consistent.

Applications using SwellRT

SwellRT facilitates the development of mobile/web apps.

Several apps are built using this technology. Apart from to the
demos provided by SwellRT and many applications devel-
oped by third parties, two full-fledged applications that are
benchmarks currently use SwellRT technology:

- JetPad (jetpad.net) [27], a GoogleDoc-like collabora-
tive editor, free/open source and federated,

- Teem (http://teem.works/) [35], a free/open source
web/mobile app for the management of communities and
collectives.

Collaborative object-based implementation with SwellRT

technology

SwellRT is a fork from Apache Wave, inherits some of its

architecture and technology stack. However, it grew beyond
the limits of Wave, first presenting itself as a web framework
and nowadays growing to a backend-as-a-service platform. Its
current technical approach covers the following:

- It is fully free/open source software. It is developed
in Java. GWT with JSInterop is used to generate JavaScript API
reusing the same source code. Android client is also built from
the same Java sources.

- It provides an extensible and pluggable rich-text edi-
tor component for Web (only) supporting custom annotations
and widgets.

- Real-time data storage is based on Wave's Operation-
al Transformations model, thus it is eventually consistent.

- It is designed to maximize interoperability, and fol-
lows a federation approach similar to Apache Wave, using
XMPP or Matrix.org communication protocol. It aims to sup-
port the creation of apps that are federated, i.e. rely on multi-
ple interoperable servers, and objects shared across servers.

SwellRT provides a programming model based on collabo-

rative objects. A collaborative object is a JSON-like object that
can be shared by some users (or groups) that can make chang-
es in real-time. Changes are propagated (and notified) in real-
time to any user connected to the object. Objects and partici-
pants are uniquely identified on the Internet enabling decen-
tralized access from different federated servers.

SwellRT allows to store and share data in real-time using
collaborative objects. They can be thought as JSON documents
with a special syntax and methods to access and change their
properties.

A collaborative object has an unique identifier on Internet,

for example mycompany.com/s+I7Nd7z3MC3N, where first
part is the domain of the Swell server, and the second part is
an id, provided by the client's app or randomly generated by
Swell. When different instances of an app have opened same
objects, they can share data in real-time through them.

Fig. 13. Communication via collaborative object.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 11, Issue 9, September-2020 1682

ISSN 2229-5518

IJSER © 2020

http://www.ijser.org

Changes in a collaborative object are persisted in the server
and transmitted to all instances in real-time.

A collaborative object can store properties of simple data

types (string, integers, etc.) as well as rich-text and references
to files or attachments. This approach is suitable to implement
any document based collaborative application like text editors
or spreadsheets.

Architecture

The architecture of our new implementation is composed

of:
- A SwellRT server which manages the storage and re-

al-time sharing of data in the form of collaborative objects
(JSON objects)

- Communication modules designed with the SwellRT
API in a distributed P2P architecture [16][25][9] playing the
roles of master and slave and using collaborative objects.
These communication modules ("master" and "slave") ensure
data exchange between the master and slave instances of the
application.

Several situations are taken into account:
- Point-to-point communication between the "master"

instance and the "slave" instance. Thanks to user identification,
the "master" instance can exchange simultaneously with sev-
eral "slave" instances,

- Multicast communication: the "master" instance
shares information with several "slave" instances. This is the
case when, for example, a user (e.g. a teacher) shares content
with other members (e.g. students).

6 CONCLUSION

This paper presented the design, using the SDL language, of a
service and a synchronization protocol for copies of distribut-
ed applications, and the remote control of one of them. A set
of user interfaces was then deduced from the user behaviour.
This protocol has been tested and validated in an environment
built around authoring systems SERPOLET. We envision as a
continuation of research work to extend it to other environ-
ments. This mechanism is an alternative to videoconferencing
software, remote screen sharing, or remote document sharing,
typically carrying bitmap images that are very bandwidth-
intensive. These software are used to communicate, give

webinars, web conferencing, remote assistance or trouble-
shooting, remote meetings, collaborative online work, etc.
which require high-quality links (broadband), and therefore
difficult to use in the case of a low-speed network. Compared
to these Softwares, the mechanism used here is very simple
and economical. It comes down to a very light-based event
exchange that does not require a lot of resources or a large
bandwidth. This mechanism therefore makes it possible to
develop synchronous and / or asynchronous learning tools
that are very economical.

Our project on this subject aims to generalize this approach

to other types of applications other than online training envi-
ronments. The idea is to allow any application to receive syn-
chronization services from application instances in point-to-
point or multicast mode. The first version of our implementa-
tion is based on Java technologies and sockets and RMI. In
order to optimize this implementation, we exploited the pos-
sibilities of SwellRT. Compared to the first implementation,
we noted ease of development as well as a marked improve-
ment in performance. We also plan to experiment with the
Linda model [7] [22] (a model of coordination and communi-
cation between several parallel processes operating on stored
and retrieved objects, associative virtual memory) to imple-
ment the exchange of messages low-level between application
instances.

From a performance perspective, the implementation of the
communication components is done in a naturally collabora-
tive environment, building on SwellRT's collaborative object-
based programming model. This has enabled us to free our-
selves from the costly specific developments of the first ver-
sions and opens up new operating prospects directly and from
all the wealth of services offered by SwellRT.

ACKNOWLEDGMENT

The author wishes to thank Habib Abdulrab, Jean-Pierre
Pécuchet, Abdenbi Drissi-Talbi, Mohamed Rezrazi, Fabrice
Sebbe and all his friends and colleagues for their help and
support. He also wishes to thank Olga, Michel, Marielle
and Guyriel who have always been a very precious support
for the realization of this work.

REFERENCES

Journal

[1] M.-L. Betbeder, C. Reffay and T. Chanier, “Environnement audio-

graphique synchrone : recueil et transcription pour l'analyse des inte-

ractions multimodales”. In JOCAIR 2006, Premières journées Com-

munication et Apprentissage instrumentés en réseau, Amiens,

France, pp. 406-420, July 2006.

[2] M. NGOMO, H. ABDULRAB, “APPLICATION SERVICE PROVID-

ER SYSTEM : THE NEW WAY TO PROVIDE INTEROPERABILITY

BETWEEN LEARNING MANAGEMENT SYSTEMS”, Web Based

Computer, WBC’2007.

[3] Omeric., “Point sur la FOAD: Rapport de mission. Mission de suivi

du projet FOAD-LSN”, Coopération Internationale 2012. Collectif

Fig. 14. Communication via collaborative object.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 11, Issue 9, September-2020 1683

ISSN 2229-5518

IJSER © 2020

http://www.ijser.org

OMERIC, Mars 2013, France.

[4] Omeric., “List des termes courants du domaine de la formation et de

l'enseignement”, Collectif OMERIC, Août 2013, France.

[5] P. Nivet, “Un inventaire des outils du tutorat en ligne”. Collectif

OMERIC, Avril 2010, France.

[6] A. Sarma, “An introduction to SDL-92”. Computer Networks and

ISDN Systems 28(1996), pp. 1603-1615.

[7] N. Carriero, D. Gelernter, T. Mattson, A. Sherman, “The Linda Alter-

native to Message-Passing systems”. Parallel Computing.

doi:10.1016/0167-8191(94)90032-9.

Conference paper or contributed volume

[8] ADO.NET, “Synchronisation de bases de données Scénarios de colla-

boration Synchronisation d'autres bases de données compatibles

ADO.NET”. https://msdn.microsoft.com/fr-

fr/library/cc761645(v=sql.105).aspx. retrieved 2020-08-20.

[9] CORDIS - European Commission, “News and Events : A substantial

boost for easily and safely producing new online apps”. cord-

is.europa.eu. retrieved 2020-08-20.

[10] M-C. Monget, T. Kelo, “Work towards automated vendor-neutral

certification of ICT skills”. Actes du congrès Ed-Media2008, pp. 37-

49, Vienne (au), Juillet 2008.

[11] M. NGOMO, H. ABDULRAB, L. OUBAHSSI, “Application Service

Provider System : a new concept to provide interoperability between

learning management systems”, Proceedings of E-Learn 2005 World

Conference (World Conference on E-Learning in Corporate, Gov-

ernment, Healthcare, and Higher Education), Vancouver,(Canada);

Research/Technical Showcase; pp. 2763-2769 (2005)

[12] M. NGOMO, H. ABDULRAB, “Application Service Provider System:

Using Web Services to Provide Interoperability between Learning

Management Systems”, International Conference WTAS 2006 (Web

Technologies, Applications, and Services), July 17-19, 2006, Calgary,

Alberta, Canada, Editor(s): J.T. Yao; pp 119-125 (2006)

[13] M. NGOMO, H. ABDULRAB, 2007: “Application service provider

system: the new way to provide interoperability between learning

management systems”, International Conference Applied Compu-

ting 2007, IADISI'2007, Salamanca, Spain, 18-20 February 2007; 12 p.

(2007)

[14] M. NGOMO, H. ABDULRAB, “Synchronization of distributed appli-

cation instances as a learning tracking mechanism”, International

Journal of Scientific & Engineering Research Volume 9, Issue 3,

March-2018, p324, ISSN 2229-5518.

[15] M. NGOMO, “Synchronization of application instances as economi-

cal way for E-learning and tele-assistance”, 4th International Confer-

ence On Computer Networks and Information Technology Held

on23rd-24thMarch 2018, in Pattaya, Thailand, p235,

ISBN:9780998900049.

[16] P. Ojanguren-Menendez, A. Tenorio-Fornés, S. Hassan, “Distributed

Computing and Artificial Intelligence, (2015]). 12th International

Conference”. Advances in Intelligent Systems and Computing.

Springer, Cham. pp. 269–276. doi:10.1007/978-3-319-19638-1_31.

ISBN 9783319196374.

[17] L. OUBAHSSI, M. Grandbastien, M. Ngomo, G. Claes, “The Activity

at the Center of the Global Open and Distance Learning Process” The

12th International Conference on Artificial Intelligence in Education,

AIED 2005, Amsterdam.

[18] L. OUBAHSSI, “Conception de plates-formes logicielles pour la for-

mation à distance, présentant des propriétés d'adaptabilité à diffé-

rentes catégories d'usagers et d'interopérabilité avec d'autres envi-

ronnements logiciels”, œuvre [Thèse de M. L. OUBAHSSI dans le

cadre d'A6/OMERIC, décembre/2005], Thèse de doctorat de

l’Université René Descartes – Paris V, Centre Universitaire des Saints

Pères, UFR de Mathématiques et Informatique, Paris, 2005.

[19] C. Reffay, T. Chanier, “Mesurer la cohésion d'un groupe d'apprentis-

sage en formation à distance”. In Actes de la conférence Environne-

ments Informatiques pour l'Apprentissage Humain (EIAH'2003),

Strasbourg, France, pp. 367-378, April 2003.

[20] C. Reffay, T. Chanier, “How social network analysis can help to

measure cohesion in collaborative distance-learning”. In Procs. of

Computer Supported Collaborative Learning Conference

(CSCL'2003), Bergen, Norway, pp. 343-352, June 2003. Kluwer Aca-

demic Publishers : Dordrecht(nl).

[21] C. Reffay, “Réseaux sociaux et analyse de traces des forums d'une

communauté d'apprentissage”. In G.-L. Baron, E. Bruillard, and M.

Sidir (Dir.), editors, Symposium, formation et nouveaux instruments

de communication, Amiens, France, p 13, January 2005.

[22] G. Wells, “Coordination Languages: Back to the Future with Linda”

(PDF). Rhodes University. Archived from the original (PDF) on 2009-

12-19.

Others references

[23] S. Hassan, “SwellRT: Facilitating Decentralized Real-Time Collabora-

tion”. Harvard's Berkman CRCS (2016-10-06), CRCS Seminar 09/26:

crcs.seas.harvard.edu. retrieved 2020-08-20.

[24] S. Hassan, “SwellRT: Facilitating decentralized real-time collabora-

tion”, Harvard Berkman Center, Monday, September 26, 2016,

11:30am to 1:00pm, crcs.seas.harvard.edu. retrieved 2020-08-20.

[25] S. Hassan, “How P2P Will Save The World', with Samer Hassan –

STEAL THIS SHOW”. 2018. stealthisshow.com. retrieved 2020-08-20.

[26] Horizon, “Collaboration that doesn't give others a license to distrib-

ute your stuff”. Horizon: the EU Research & Innovation magazine.

https://horizon-magazine.eu/article/collaboration-doesn-t-give-

others-license-distribute-your-stuff_en.html (14 June 2017). Retrieved

2020-08-20.

[27] “JetPad”. jetpad.net. retrieved 2020-08-20.

[28] Matrix (XMPP or Matrix.org), “Matrix is an open standard for in-

teroperable, decentralised, real-time communication over IP”. re-

trieved 2020-08-20.

[29] OSS|www.opensourceschool.fr. “SwellRT : une technologie open

source pour applications”. retrieved 2020-08-20.

[30] P2Pvalue blog (2016). https://p2pvalue.eu/. "Special Announce-

ment: P2Pvalue and Google Summer of Code 2016”. P2Pvalue blog.

2016-04-17. retrieved 2020-08-20.

[31] P2Pvalue (2017). “SwellRT: open source framework for real-time

collaboration”, P2Pvalue, 2017-10-20, retrieved 2020-08-20.

[32] Programmez! (French Magazine). Par: fredericmazue, mer,

03/05/2017 - 11:4. “SwellRT : un cadre open source de développe-

ment d'applications Web collaboratives décentralisées”.

https://www.programmez.com/actualites/swellrt-un-cadre-open-

source-de-developpement-dapplications-web-collaboratives-

decentralisees-25932. retrieved 2020-08-20.

[33] H. Rough (in RoughHaste, 2017-04-23), “Notes on “How P2P Will

Save the World”. https://medium.com/roughhaste/notes-on-how-

p2p-will-save-the-world-a12db16d1b47. retrieved 2020-08-20.

[34] “SwellRT”|http://swellrt.org/. retrieved 2020-08-20.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research Volume 11, Issue 9, September-2020 1684

ISSN 2229-5518

IJSER © 2020

http://www.ijser.org

[35] “Teem”, http://teem.works/. Retrieved Retrieved 2020-08-20.

IJSER

http://www.ijser.org/

